Différentes représentations et définitions de la fonction exponentielle

Kévin BRAULT

01/02/2024

La fonction exponentielle, notée e^x , est l'une des fonctions les plus fondamentales en analyse mathématique. Elle a des applications vastes et diverses en physique, ingénierie et autres disciplines scientifiques. L'une des propriétés remarquables de cette fonction est que sa dérivée est égale à elle-même, c'est-à-dire $\frac{d}{dx}e^x=e^x$. Il y a plusieurs méthodes pour démontrer cette propriétés remarquable.

La fonction exponentielle e^x peut être représentée de plusieurs façons. Voici quelques méthodes principales de représentation :

Définition par série entière (développement en série de Taylor)

La fonction exponentielle peut être définie à partir de son développement en série infinie (série de Taylor) autour de x=0. La formule est donnée par :

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Cette représentation est valable pour tout $x \in \mathbb{R}$.

Définition par une équation différentielle

La fonction exponentielle est la solution de l'équation différentielle suivante :

$$\frac{d}{dx}e^x = e^x$$

Avec la condition initiale $e^0 = 1$, cette équation définit pleinement la fonction exponentielle.

Définition par une limite

Une autre définition de la fonction exponentielle se fait par une limite. Elle est donnée par :

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$$

Représentation en termes d'intégrale

La fonction exponentielle peut aussi être exprimée à l'aide d'une intégrale. Par exemple, pour $x \ge 0$, elle peut être définie comme :

$$e^x = \int_0^\infty e^{-t} \, dt$$

Cette représentation permet de relier la fonction exponentielle à la théorie des intégrales et est utile en théorie des probabilités.

Représentation comme produit infini

L'exponentielle peut également être représentée par un produit infini :

$$e^x = \prod_{n=1}^{\infty} \left(1 + \frac{x}{n} \right) e^{-x/n}$$

Représentation via les logarithmes (fonction réciproque de l'exponentielle)

La fonction exponentielle est la fonction réciproque du logarithme naturel ln(x). Cela signifie que si $y = e^x$, alors x = ln(y). Cette propriété est utilisée pour définir l'exponentielle dans certains contextes où la fonction logarithme est plus naturelle.

Représentation en termes de trigonométrie complexe (ou formule d'Euler)

Une des représentations les plus célèbres de l'exponentielle est liée à la trigonométrie et à l'analyse complexe. Selon la formule d'Euler, pour un nombre complexe z=ix (où i est l'unité imaginaire), on a :

$$e^{ix} = \cos(x) + i\sin(x)$$

Représentation graphique

Graphiquement, la fonction exponentielle e^x est une courbe toujours positive et croissante pour tout $x \in \mathbb{R}$. Ses principales caractéristiques sont :

- Passe par le point (0,1)(0,1), car $e^0 = 1$.
- Taux de croissance proportionnel à sa propre valeur. Asymptote horizontale lorsque $x \to -\infty$ (la fonction tend vers 0 mais ne l'atteint jamais).

